SUSTAINABLE GROUNDWATER MANAGEMENT WORKSHOP

..

March 24, 2014

"SUSTAINABLE"

Groundwater Management

California Water Action Plan

("Plan")

- 1. Overdrafted basins
- 2. Land subsidence
- 3. Seawater intrusion
- 4. Decline in ecosystem services
- 5. Degraded water quality

DRAFT

Hydrologic Region: Tulare Lake South Central Region Office (SCRO) Basin Area: 1950113 acres (3047.1 miles)

2010 Population: 700323

Basin: SAN JOAQUIN VALLEY Sub_Basin: KERN COUNTY Basin Number: 5-22.14

Date: 12/30/2013

Page SCRO-48

DATA COMPONENT RANKING VALUE TABLE

Data Component		Ranking Range	Units	Ranking Value	Confidence Adjustment	Average of Components	Adjusted Ranking Values
1. Population		7 - 250	persons/sq-mi	1			1
2. Population Growth		≥ 40%	percent	5			5
3. Public Supply Wells		0.11 - 0.25	wells/sq-mi	2			2
4. Total Wells		2.1 - 5.0	wells/sq-mi	2	1.5		1.5
5. Irrigated Acreage		251 - 350	acres/sq-mi	4	3		3
6. GW Reliance	GW Use	0.41 - 0.60	acre-foot/acre	3		2.25	2.25
	% of Total Supply	21 - 40	percent	2	1.5		
7. Impacts*				5			5
8. Other Information**				1			1
Overall Basin Ranking Score		> 19.7	-				20.8

Overall Basin Priority: High

Very Low Ranking Range	Low Ranking Range	Medium Ranking Range	High Ranking Range
0 - 5.4	5.4 - 12.5	12.6 - 19.7	> 19.7

Data Sources and Calculation Notes:

- 1. Population: Dept. of Finance 2010 census data.
- 2. Population Growth: Dept. of Finance 2010 census data projected to 2030.
- 3. Public Supply Wells: Dept. of Public Health, 2012 Drinking Water Supply Database.
- 4. Total Wells: DWR Well Master database.
- 5. Irrigated Acreage: DWR 2005 land use data.
- 6. Groundwater Reliance: DWR, 2005 land use data.
- Documented Impacts: DWR Region staff review of DWR Bulletin 118-2003, GWMPs, or other readily available published information.
- Other Information: DWR Region staff review of DWR Bulletin 118-2003, GWMPs, or other readily available published information.
- 9. Data component values were reduced by 25% due to data confidence, prior to calculating total GW basin ranking value. Overall Basin Ranking = Population + Population Growth + PSW + (Total Wells x .75) + (Irr Acreage x 0.75) + {[GW Use + (GW % x .75)]/2} + Impacts + Other

Notes on SAN JOAQUIN VALLEY Basin

- * Impacts: Subsidence, overdraft, water quality degradation
- **Other Information: Agricultural importance, large basin which results in low population density.

Kern County Subbasin

Impacts:

- 1. Subsidence
- 2. Overdraft
- 3. Water quality degradation

Page 3

Responsibility <u>WITH</u> Authority

"...the Plan calls for legislation that gives local and regional agencies comprehensive authority to address their groundwater challenges"

Websters:

au-thor-i-ty

The power to determine, adjudicate, or otherwise settle issues or disputes; jurisdiction; the right to control, command, or determine.

Existing Tools, Authorities and Incentives:

Authorities

- Water Districts/Agencies have limited authority to address groundwater sustainability issues.
 - Land Use Planning

Tools

- CASGEM
- Groundwater Management Planning
- Integrated Regional Water Management Planning
 - Monitoring & Reporting Focused

Incentives

Grant Funding -

What more is needed?

Authorities

- Well permits / Will serve
 - Land use planning connected to GWMP agency
- Groundwater metering
 - Or functional equivalent
- Demand management
- Data collection & reporting
- Ability to asess fees
 - Clarity on 218 issues etc.
- Enforcement authority

What more is needed?

Tools

- Access to technical resources & support
- State to provide methods/protocols "tools" to:
 - Measure & Map
 - Understand the resource
 - Monitoring
 - Expansion of CASGEM concept
 - Management
 - Clearly defined requirements
 - Groundwater modeling to evaluate actions & sustainability thresholds

What more is needed?

Incentives

- Local control/acceptance for entities that form Groundwater Management Planning Group –
 - State backstop for others (shorter time?)
- Technical Support
- Recognition of basins that have met sustainability goals
 - Reduced monitoring etc.

Funding

- Must be at a level that makes implementation possible given local economic factors
- Water Supply
- State water policy that links surface water supplies and groundwater sustainability

Final Thoughts:

- 1. Groundwater and surface water are an interconnected single resource.
- 2. In Kern County, Groundwater "impacts" are a symptom of supply reduction.
- 3. Limitations on groundwater pumping will be economically devestating for many areas.

Solutions should focus on both supply restoration as well as demand management